Low Rank Representation on Grassmann Manifolds
نویسندگان
چکیده
Low-rank representation (LRR) has recently attracted great interest due to its pleasing efficacy in exploring low-dimensional subspace structures embedded in data. One of its successful applications is subspace clustering which means data are clustered according to the subspaces they belong to. In this paper, at a higher level, we intend to cluster subspaces into classes of subspaces. This is naturally described as a clustering problem on Grassmann manifold. The novelty of this paper is to generalize LRR on Euclidean space into the LRR model on Grassmann manifold. The new method has many applications in computer vision tasks. The paper conducts the experiments over two real world examples, clustering handwritten digits and clustering dynamic textures. The experiments show the proposed method outperforms a number of existing methods.
منابع مشابه
Low Rank Representation on Grassmann Manifolds: An Extrinsic Perspective
Many computer vision algorithms employ subspace models to represent data. The Low-rank representation (LRR) has been successfully applied in subspace clustering for which data are clustered according to their subspace structures. The possibility of extending LRR on Grassmann manifold is explored in this paper. Rather than directly embedding Grassmann manifold into a symmetric matrix space, an e...
متن کاملLocalized LRR on Grassmann Manifolds: An Extrinsic View
Subspace data representation has recently become a common practice in many computer vision tasks. It demands generalizing classical machine learning algorithms for subspace data. Low-Rank Representation (LRR) is one of the most successful models for clustering vectorial data according to their subspace structures. This paper explores the possibility of extending LRR for subspace data on Grassma...
متن کاملKernelized Low Rank Representation on Grassmann Manifolds
Low rank representation (LRR) has recently attracted great interest due to its pleasing efficacy in exploring low-dimensional subspace structures embedded in data. One of its successful applications is subspace clustering which means data are clustered according to the subspaces they belong to. In this paper, at a higher level, we intend to cluster subspaces into classes of subspaces. This is n...
متن کاملA Newton-Grassmann Method for Computing the Best Multilinear Rank-(r1, r2, r3) Approximation of a Tensor
We derive a Newton method for computing the best rank-(r1, r2, r3) approximation of a given J × K × L tensor A. The problem is formulated as an approximation problem on a product of Grassmann manifolds. Incorporating the manifold structure into Newton’s method ensures that all iterates generated by the algorithm are points on the Grassmann manifolds. We also introduce a consistent notation for ...
متن کاملBuilding Deep Networks on Grassmann Manifolds
Learning representations on Grassmann manifolds is popular in quite a few visual recognition tasks. In order to enable deep learning on Grassmann manifolds, this paper proposes a deep network architecture by generalizing the Euclidean network paradigm to Grassmann manifolds. In particular, we design full rank mapping layers to transform input Grassmannian data to more desirable ones, exploit re...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014